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1. Introduction

Squeeze film damping (SFD) occurs when a plate moves in close proximity to another surface, in effect alternately
stretching and squeezing any fluid that may be present in the space between the moving plates. The fluid can act as a mass,
spring and damper, having a significant effect on the dynamics of the moving plates. The primary goal of a fluid film
damping system is to limit the vibration of a given structure by dissipating the energy to the fluid within the film. However,
in micro-electromechanical systems (MEMS) and micro-opto-electromechanical systems, the SFD impacts the operating
behavior such as in microswitches, microsensors, microaccelerometers, telescope mirrors [1], etc. From a vibrational
point of view, the SFD is a very useful and cost-effective solution to most vibration and vibration-caused noise reduction
problems.

Extensive literature has already been developed for the SFD effect relating to air film lubrication [2], which has
application in air bearing and levitation systems. The squeeze film analysis of the fluid is covered by three classes of
models, the standard Helmholtz equation model, the low reduced frequency model and the Navier-Stokes model.

Darling et al. [3] used the linearized Reynolds equation to calculate the additional spring and damping force acting on
the plate using Green'’s function. Ingard et al. [4] used the wave equation approach under the small amplitude assumption.
Using the wave equation and statistical energy analysis, Chow et al. [5] predicted the damping well above the critical
frequency of the thick plate. However, the loss factor calculations for the statistical energy analysis are based on the
impedance approach which needs the pressure distribution to be calculated in advance.

Maidanik et al. [6] used the simplified Navier-Stokes equation approach with the incompressible fluid assumption.
However, the validity of this assumption is restricted to very low frequencies. Onsay [7] and Fox et al. [8] developed
fully coupled models including viscothermal effects. Beltman [9] considered viscothermal effects by the full linearized
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Navier-Stokes problem and low reduced frequency model, and investigated a spherical resonator [10]. Basten et al. [11]
applied the low reduced frequency solution of Beltman et al. [9] to calculate the acousto-elastic behavior of
double-wall panels. Readers should refer to Refs. [9,11] for an extensive literature review. Moreover, Beltman [9] developed
a viscothermal acoustic finite element which models the effects of inertia, viscosity, compressibility and thermal conductivity.
Akrout et al. [12] applied this development to two laminated glass plates enclosing a thin viscothermal fluid cavity.
Lei et al. [13] developed a three-dimensional viscous finite element model for the analysis of the acoustic fluid-structure
interaction systems including the cochlear-based transducers which consists of a three-dimensional viscous acoustic
fluid medium interacting with a two-dimensional flat structure domain. Akrout et al. [14] used a modal approach to
determine the vibro-acoustic system'’s response which shows the importance of the viscothermal effects in the case of thin
fluid layers.

The Reynolds equation, known from lubrication technology and the theory of rarefied gas physics, is the theoretical
background to analyze the SFD effect in this paper. The models that account for flexibility are almost exclusively based on
the linearized Reynolds equation or its simplest version—the linearized incompressible Reynolds equation [15]. The
models that use the nonlinear Reynolds equation however usually approximate a structure as a one-dimensional beam
[16]. The nonlinear Reynolds equation is used in conjunction with the plate equation only in Nayfeh’s work [17]. Langlois
[2] found damping and spring forces based on squeeze number using a strip plate. Starr [18] noticed the nonlinear effects
based on amplitude [19] and gave an approximate formula in order to calculate the nonlinear damping force based on the
constant deformation of an oscillating plate. The effects of the boundary condition and the mode shape of the oscillating
plate are usually ignored while calculating the viscous forces in MEMS area. The common approach is to minimize the
damping force in order to reduce the effect of damping on the operating behavior. Because of this, many researchers
analyzed a plate with multiple holes with varying geometry [20-22].

The SFD of parallel plate and basic damping effect can be explained using the modal theory. The resistive force to the plate
oscillating normally against the stationary plate is caused by the pressure distribution between plates. Generally, if the plate
oscillates with a low frequency, the fluid is not compressed considerably. In this case, there might be an additional mass
loading due to the air pumping mechanism. However, if the oscillation frequency of the plate is high, the air fails to escape
resulting of the elastic force domination. The Reynolds equation is not valid for high frequencies since the Reynolds
equation does not include inertial terms. The measure of applicability of the Reynolds equation can be found by comparing
inertial forces with viscous forces. Gross [23] defined the validity of the Reynolds equation by using the modified Reynolds
number (Re*) which is defined by the ratio of the inertial force to the viscous force. According to this approach, the Reynolds
equation is valid for Re* < 1 since the Poiseuille velocity profile along the gap is assumed. The usage of the low reduced
frequency model derived from viscothermal models [9,24], covers both the Reynolds equation and the wave equation using
shear wavenumbers.

This paper reports results of a theoretical analysis for the SFD effect on a flexible plate using Green’s function. The
attached plate mode shapes are applied to the nonlinear Reynolds equation as a forcing term for the fluid to calculate the
nonlinear spring and damping forces. For the purpose of this investigation, this can be accomplished by affixing a cover
plate over the vibrating structure while leaving a thin air gap between the two pieces. Attaching a new elastic system to
the vibrating structure can be thought as the tuned mass damper. However, unlike in the tuned mass damper, the SFD is
effective over large bandwidth instead of one particular frequency.

The harmonic solution of the nonlinear Reynolds equation is presented in this work. The general solution of the
nonlinear Reynolds equation is divided into each harmonic subproblem. It is also shown that each harmonic problem is
dependent upon the solutions of previous harmonics. Using the general solution of the Helmholtz equation, the solution to
each harmonic problem can be found using Green’s functions. Particular solutions of the nonhomogeneous Helmholtz
equation require the input mode shape which can be calculated using biharmonic plate expressions. Using the
approximate mode shapes of a rectangular elastic plate, the damping ratio and frequency shift for the linear case, as well as
the complex resistant pressure, for both linear and nonlinear cases are calculated.

2. The nonlinear Reynolds equation solution

The fluid flow in continuum regime is governed by the continuity equation and the Navier Stokes momentum equations
which are valid for unsteady, compressible and viscous flow. For a small air-gap separating the two plates, the squeeze film
flow is predominantly two dimensional (e.g. in the x-y plane). Under following assumptions

o No external forces act on the film.

No inertial effects exist.

The structure oscillates with small amplitude and the main flow is driven by pressure gradients in the x and y
directions.

No slip flow occurs at the planar boundaries.

No variation of pressure across the fluid film.

The flow is laminar; no vortex flow and no turbulence occur anywhere in the film.

Fully developed flow is considered within the gap.
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e Different assumptions can also be considerable for specific type of fluid. For air, flow is assumed to be isothermal,
i.e. (pocp).

The nonlinear Reynolds equation is

3

v. (fz”ﬂw>=§t(ph) M)
where Vp is the gradient of the pressure, h is the thickness of the film, and p is the fluid viscosity. At low ambient pressure
or in very thin films, when the mean free path length of the gas is not negligible compared with the film gap h, molecular
interactions with the surfaces need to be taken into account. The theory of rarefied gas flow was developed by Knudsen in
the early 1900s. Veijola [25] has given a function that approximates the pressure and film width dependency of the
viscosity in narrow gaps by

Hefr = (2)

u
1+9.658Kn! 1%
where Kn is the Knudsen number defined as Kn = 4/h, where / is the mean free path of molecules and h is the gap distance.
Based on different derivation considerations, one can get a different viscosity definition such as in [26]. The mean free path
of air molecules at ambient pressure P, is about 65 nm.

The Reynolds equation is applicable only in the continuum flow regime; the relationship between the Knudsen number
and flow regimes is shown at Table 1. The effective dynamic viscosities are also tabulated to show the effect of the flow
regime on the viscosity.

Under the assumption of harmonically varying gap thickness with the frequency of w (rad/s), the following equation is
defined:

h(x,y,t) = ho(1+0®(x,y)el™") (3)

where @ is the function of x,y which is the deflection shape of the structure, ¢ is the dimensionless vibration amplitude
which is smaller than 1 and w is the angular frequency. Since Eq. (1) is nonlinear, harmonics of w will appear in the
pressure solution. So the pressure can be assumed as

px,y,t)="Pq <] + i ar(X,y)ej“wf> @

r=1

where a,(x,y) is the coefficient for the rth harmonic, which is also complex.
If Egs. (3) and (4) are put into Eq. (1), it can be rewritten as

2 i S ket grory O i i YOO ket giror _ 1 i rjo(ar +a,_1 )t (5)
axk:”:k ox ayk:”:k oy ]
where ¢ is the squeeze number per unit area,
o= (6)
and
Y=a,_1+35®a, > +38°®P%a, 3 +5P3a,_4 (7)
The complex coefficients for the zero and negative values of r are therefore,
a=1, a;=0 forr<0 (8)

In order to get the squeeze number which is reported in the literature [16,25], Eq. (6) should be multiplied by the total
area of the plate, i.e L,L,. The first three harmonics of the Eq. (5) can be written as Egs. (9)-(11) respectively as

62(11 6201 .
L=l =jo(a; + 6@ 9
ox2 ayz J ( 1 ) ( )
Table 1
The Knudsen number and the corresponding flow regimes.
Knudsen number (Kn) Flow regime Hege/ 1
Kn <0.01 Continuum 0.956 < e /<1
0.01 <Kn<0.1 Slip 0.6 < plegr /1t < 0.956
0.1<Kn<10 Transitional 0.007 < pegr /1 < 0.6

Kn>10 Molecular 0 < fegr /1t < 0.007
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sx a‘12+(a +3a@)aal} aay {aaz +(a; +35<1>) =2jo(a; +a;5P) (10)
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These nonhomogeneous Helmholtz equations (9)-(11) can be solved using Green’s functions exactly for the uniform
deflection profiles. However, only the first harmonic solution is published in the literature [3]. In the present study, more
complicated and realistic plate deflections are considered and the modal force approach is presented. Once the
first harmonic equation is solved using Green’s functions, Fourier series or numerical methods, the second harmonics
can be solved using the first harmonic solution. Moreover, higher harmonics can also be sequentially solved
since all the equations are the nonhomogeneous Helmholtz equations, of which the forcing term is already
calculated.

2.1. Solution using Green’s function

Darling et al. [3] showed the use of Green’s function to solve the linearized nonhomogeneous Reynolds equation.
Compact analytical models were also presented considering the rigid uniform and the tilting motion of the plate. However,
the mode shapes of the rectangular plates are not considered. This present study is the extension of the solution to the
elastic models of plates considering the nonlinear Reynolds equation.

The general solution to the linearized Reynolds equation can be given using an infinite series as

axY)=> > bunfm(X)gn(y) (12)

where f;,(x) and g,(y) are the harmonic functions of x and y respectively which satisfy the boundary conditions, and b, is a
complex constant coefficient. The derivative of f,,,(x) and g,(y) are

Pfm®) _ o

azgn(.V) _
ox2 -

oy?

#*fn(x) and —n2 B gn(y) (13)

where m and n are the integer numbers that can be odd or even based on the boundary configuration, ¢ and f are the
multipliers of x and y inside the functions f,;, and g,. If the deflection shape @ of the plate is expanded to the same series
such as

oo 00

D(x,y) = Z Z Emnfm(X)gn(y) (14)

m n
the following relationship can be obtained by putting Eqgs. (12) and (14) into (9),
—jad

—————¢ 15
m202 +n2f% +jo " (15)

bmn =

If the same procedure is applied for the second harmonic, considering the expansion on the same f,(x) and g,(y)
functions,

RxY) =" ranfm(X)ga(y) (16)

L, L
rn= [ [ R0 dxay (17)
where the known forcing function R is

R=bun{(bmn +33emn)(f;282 + 2872 —9f282)—2j0 5emnf282) (18)

where f,, and g, are the derivative, w.r.t. its independent variable, and 9 = m2c? +n2[32. In this case, the complex constant
coefficient of the second harmonic turns into

= rn—mz (19)
m202 +n23° +2jo

where ax(X.Y) = > 3% Cmnfm(X)gn(Y)-
The generalized pressure solution to the rth harmonic can also be given in a similar form as in Eq. (12):

ar(x,y) = Z Z i (08K (V) (20)
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where dp,, represents the rth harmonic complex constant coefficient which can be obtained as

s
d = >mm (21)
" m2e2 4+ n2 % +rjo

in which s, represents the coefficients of the residual known term expansion which is dependent upon the solutions of all
harmonics up to the rth harmonic.

The pressure domain solution for the first harmonic equation (12) can be represented in compact form using Green’s
function also as

L, ply
a(xy)= /0 /O PEMGK.Y.Emdédn (22)

where G is Green'’s function

Gy, Em="> > emnfm()gnW)fin(E)gn(n) (23)

where ¢np, is @ multiplier which is dependent upon m,n,w and o.
If the deflection of the plate @ is one of the mode shapes of the plate @ = @,;,, the modal force can be written using the
pressure solution as

Ly Ly
N= /0 [ oy pxy) drdy (24)

If the mode shape @, is selected as orthonormal, which satisfies

L, pLy
/0 A PPm(x,y)Pm(x,y) dxdy =1 (25)

where p is the mass per unit area of the plate. The modal force for the first harmonic solution (N;) of the pressure can be
obtained as

00 0 —j05 )

Ny = —_— ¢ (26)
! zm:;mzoc2+n2/32+ja m

The modal forces for the rth harmonic can now be written as in a generalized form as

Ne=S3 S, 27)
m

¢
— m202 +n2 8 +rjo

2.2. Range of applicability

In 1962, Langlois [2] derived the general form of the Reynolds equation based on the Navier-Stokes equations and the general
equations of hydrodynamics. The Reynolds equation is obtained under the condition that the modified Reynolds number is much
smaller than unity. The Reynolds equation is not valid for high frequencies since it does not include inertial terms. The measure of
applicability of the Reynolds equation can be found by comparing inertial forces with viscous forces per volume [23],

.« inertial force  pu(du/on)
~ viscous force ~ y0%u/0z2)

(28)

where u is the fluid flow velocity in the direction of n. Assuming the Poiseuille velocity profile along the gap and the direction n as
the x-axis, the following formula can be obtained for the fluid flow velocity:

__hz(dp/ox) z
u=" (1 - E) (29)
where z is the direction along the gap. The modified Reynolds number is defined as
2
Re* = %ho <1 (30)

which should be smaller than unity for any point underneath the plate. The modified Reynolds number can be rewritten using the
squeeze number as

* pPahg
To12u2

The modified Reynolds number formula considering the journal bearings can be found in Ref. [23].

Re

(31)
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3. Calculation of squeeze film stiffness and damping

According to the analysis of Langlois [2], and Griffin et al. [27], squeeze film air provides extra damping and stiffness
force to the system. For a finite element modeled system, one can get mass, stiffness and damping matrices as

MXx +Kx = f(x,%) (32)
Eq. (32) can be expressed in terms of modal vectors, x(t) = @, @(t) in which &,, represents modal vector as follows:
P+ 2P = OLf( Do, Pm) (33)

where w, and ¢(t) represent the natural frequency and modal coordinates. For a continuous system, Eq. (33) can be
written as

b+wlp= /Q Do (Prp, D) AQ (34)

where Q represents the solution domain. After the calculation of the modal forcing term, the imaginary part can be
converted into the velocity component using the relationship ¢ =jw.

The right hand side of Eq. (34), the modal force provides two components the in-phase and the out-of-phase which can
be decomposed as dﬁ,T,Lf: —F.p—F4¢. Considering a single degree of freedom system, the damping ratio and the natural
frequency shift can be found as

_ 1
~ 2wy

Aw = /% +Fy—wy (36)

The damping ratio and the frequency shift formulations are based on the linear pressure solution, hence it cannot be
applicable to nonlinear cases. The mass normalized mode shapes are used in order to calculate the modal damping and the
frequency shift using Eqgs. (35) and (36). The other way to calculate the damping ratio and the frequency shift is to use the
time integration technique and then calculating the phase difference. However, the nonlinearity or higher harmonics
cannot be captured since the stiffness and the damping are calculated based on the phase difference between the velocity
and the pressure. Moreover, the sucking and squeezing motions create unequal fluctuations around the ambient pressure.

¢ Fy (35)

4. Examples

To illustrate the details of the pressure and modal force solution, the transverse motion of a plate is considered. The
problem domain is selected as 0=x=L, and 0=y=L, corresponding to a rectangular plate of dimensions L,L,. The proper
Green’s function is constructed and used for each different case. For the structural modal solution, approximate mode
shapes for Poisson’s ratio is 0.25 which can be found in Ref. [28] are used. Tabulated mode shapes are calculated
approximately using the Rayleigh method. In order to solve the problem defined by Eq. (5), boundary conditions should be
defined. For the boundary edges there are two different boundary conditions:

e Boundary point is open to ambient pressure p=P,.
e Pressure gradient is zero, or closed end dp/on =0 where n is the outwards normal vector at the boundary.

The structural boundary conditions for the plate edges are represented by four letters. For example, CFCS stands for
clamped-free-clamped-simply supported plate for bottom (y=0), right (x=L,), upper (y=L,) and left edges (x=0). It is
assumed that the pressure gradient is zero for simply supported and clamped edges, whereas the boundary condition is
open to ambient air for the free edge. All investigated mode shapes are shown at Table 2.

The first harmonic solution to the nonlinear Reynolds equation is presented in the following subsections. The second
harmonic solutions can be found in the Appendices.

4.1. Exact solution for clamped boundary conditions (CCCC)

For the clamped boundaries case, the approximate normalized mode shape [28] using the Rayleigh method is given as

D(x,y) = (COSZLX—1> (coszﬂ_ ) (37)
L. I

The first-order pressure a; can be written using Eq. (12) where

f(x)=cos anx' g(y)=cos 2nny (38)
Ly L,
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Table 2
Mode shapes.

Configuration Deflection shape @(x,y) = @ (X,y)
ceee cos@—l) < sley—1>
y

CFCC

FCFC

(
(-
(-
FSFS (s >
(-
(-

CFFC

FFFC

Since the mode shape can be represented by using only four terms of the entire series, the solution of the
nonhomogeneous Helmholtz equation yields only four terms. Using the solution, the nondimensional pressure can be
calculated as follows:

. jo jo jo
axy)=0| -1+ + - 39
1%.Y) ( 2+J0_f1( ) 7 ﬂ,o_glty) @1 e fix )gl(V)) (39)
where o« =2n/Ly, f =27 /Ly, fi(x) = cosox and g;(y) = cosfy. And modal force can be obtained as using the orthonormalized
mode shape equation (37) as
N:—l LyLy, (24 ZJO-‘ jo 1 jo (40)
3V p 2 +jo B> +jo 2oc2+ﬂ +jo

where p is the constant mass density per unit area of the plate.

Unlike the solution which is given by Darling et al. [3], which exhibits the infinite series solution for the uniform plate
displacement, the solution to a particular mode shape includes the first couple of terms of the entire series due to the
expansion of the mode shape. Darling concluded that the damping mechanism does not exist considering the uniform
motion. However, even if all the edges are closed, the pumping mechanism due to the mode shape deflection, exists which
creates damping, which is plausible and can be understood by considering the imaginary part of Egs. (39) and (40).

One can get a similar formula using the low reduced frequency model approach as follows:

Iw o o
®+ e
) sy Co(f? +a2)+ T w

cmo+cooczfl cof*+1w
where av; is the pressure solution of the first harmonic to the low reduced frequency model, s= 1hg\/pw/p is the shear
wavenumber, I is the propagation constant, ¢, is the velocity of the sound, n(sé)=(1+((y—1)/7)B(s6)) ",
B(s6) = tanh(s+/j)/s\/j—1, y is the ratio of the specific heats, and & is the square root of the Prandtl number. More
information about the low reduced frequency model can be found in Ref. [24].
The nonlinear (second harmonic) solution for the CCCC case can be found in Appendix A.

an (x,y) = gn(sé’)<—1 + fi (X)gl(Y)> (41)

4.2. Case: CFCC

Considering the same plate geometry as before, but a free edge at y=L,, the nondimensional pressure a; can be
obtained as

00 s q4\(m—=1)/2
a;(x,y) = ZJ—J(S( 131171 Emn <l—lcosziy)cos mmx (42)
m

where

n—4 m2n m2m2 2
- m=1 T . .
Emn = 2 and A; = +j0' A, = +4=— +jo, j=v-1form=1,3,5,....
412 412 L2
4 m>1 y

After using the orthonormalized mode shape with a multiplier 1 ,/3LL,(31—8)/pm, the modal force can be written as

N= i*j\/LxLy 20 0Emn <l+ 1 ) (43)

T 27/3m2Sm? /p 24,
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where

n2-8n+16 m=1 37—8
Emn = and S= .
32 m>1

The nonlinear (second harmonic) solution for this case can be found in Appendix B.

4.3. Case: FCFC and FSFS

Considering the same plate geometry as before, but with the clamped edges, which is the zero flow condition, expressed
as x=0 and x=L,, and the free edges at y=0 and y=L,, the nondimensional pressure can be found as

_ 4jo0 1 2nx\ . nmy
a1 (x,y) = Zn: o (A—l—A—z os?>51 I (44)

where Ay =n?n?/L2+jo and A, = 4n? /L2 +n?n? /L2 +jo for n=1,3,5,.
Using 2(6L,<Ly/p)1/2 as the orthonormal multlpller one can find the modal force as

4 LyLyPq
N= Z—fl e (2 ) (45)
V3n2n2 /p A Ay
If the simply supported mode shape is used, then the pressure and the modal force turn into
axy)=>>_>" 810 0¢mn Cosrr;nx sinnL—ny (46)
mon2(m2— l)n(mzn +”L’f +_]G) X y
X & —32v2j\/LL,P, ;

N=STS 32v2j/ 20 0Emn (47)

m n 7'54(1712 1)n2f<m2“2 H >

where
1 =1
‘9’""_{2 m>1

and the orthonormal multiplier is \/LxL,/2p for m=0,2,4,...and n=1,3,5,....
The nonlinear (second harmonic) solution for this case is presented in Appendices C and D.

4.4. Case: FFFC

In this case, the three edges where x=L,, y=0 and y=L, are considered as open to the ambient air, and the left edge is
considered as the zero flow condition at x=0, the nondimensional pressure is

SENCE jooe mnx . mn
aEy=>_>" J90%mn cos5 smL—y (48)
m n nzmn<m2n2 4nz ‘H(f) y
412 I
where
n—4
—_— m=1
Emn = 4 form=1,3,5,... andn=1,3,5,...

(71)(m+])/2 m>1

After using the orthonormalized mode shape with the multiplier /LiL,(37—8)/2pm, the modal force can be
expressed as

0o 00 : 2
N ZZ —432j\ /Ly Pao 52, (49)
moon 3n— 8m2n2 m2 2 n2n2 c
P «/— + 1_2 +-]

The nonlinear (second harmonic) solution for this case is presented in Appendix F.
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4.5. Case: CFFC

Considering the same plate as in FFFC case, but with the clamped edge at y=0, the nondimensional pressure a; is

. & —jodeme mnx __ 7n
aEy=>_ > JO0EméEn cosTcosz—Ly (50)
m n nzmn<m2nz +”2”2+j6) X y
412 412
where
n—4 me1 n—4 ne
em=14 4 T and g ={ 4 ~ form=1,35,... and n=1,3,5, ...
(~1)mED2 m>1 (G DR E P

The modal force can be obtained after using the orthonormalized mode shape with the multiplier (37—8)/2)\/LsL,/pm as
00 00 _29i 2 o2
N— Z 32j\/LxLyPaodcs &5 (51)
m.n 7z3(37'c—8)n12n2\/ﬁ("jfL’%2 +EZ +ja>
X v

The nonlinear (second harmonic) solution for this case is presented in Appendix E.

5. Comparison of cases
5.1. Linear (First harmonic) comparisons

In this section, the pressure values and modal forces are compared for a square plate Ly=L,=1m, considering the
orthonormalized mode shapes. Readers should divide the mode shapes with its multiplier to replicate the following
results. The real and imaginary components of each modal force are plotted in Figs. 1 and 2 as functions of the squeeze
number ¢ defined by Eq. (6) and compared with the solution of Darling et al. [3] in which deflection is taken as uniform.
While calculating the complex resistance force using Darling’s formula, the total mode deflection is used as the uniform
deflection amplitude. The mass density per unit area p is selected as 1kg/m? in order to compare with the literature
results. Moreover, the frequency shift and the damping ratio are also evaluated and plotted in Fig. 3 for each case using
Eqgs. (35) and (36) considering w is changed inside Eq. (6). The other parameters used in the calculations are

Pa=100kN/m?, u=2x10"°Ns/m?, hg=0.1mm (52)

and ¢ = (w/4)s/m?. The modified Reynolds number for the examples are Re* = /400, which validates the results up to
o =400m~2 (2.6 in the Log scale).

The normalized stiffness force for different boundary conditions are presented with the literature results [3] in Fig. 1. It
is interesting to note that the stiffness force converges to 0.45 for the CCCC case and goes to 1 where the theoretical limit
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Fig. 1. Normalized spring force for different boundary conditions of a square plate: (a) [3] for constant uniform deflection, (b) present study.
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for high ¢ values. Fig. 1(b) depicts that the normalized stiffness force remains constant for CCCC unlike vented cases, while
vibration frequency w is decreasing. This trend is clearly the same as in Fig. 1(a) and the order of ventilation cases are the
same. For the vented cases, the low frequency force exhibits a directly proportional relationship in the Log-Log scale and
the following relationship can be extracted

stiffness force

stiffness force 2
logqo SPLL, log;go (53)

The normalized damping force for both the literature results [3] and the present study results are shown in Fig. 2. It is
observable that the damping force increases proportionally with ¢ values up to a maximum level then decreases gradually.
The decreasing trend for the realistic cases in Fig. 2(b) is not the same as for the uniform deflection case in Fig. 2(a).
However, the increasing trend in Fig. 2(a) is nearly the same as in Fig. 2(b).

The effects of w and/or ¢ on the frequency shift and damping ratio can be seen in Fig. 3. A Log axis is selected in order to
capture the effects. Notice that the plate mode shape is assumed unchanged during the calculations of the frequency shift
and damping ratio. It is interesting to point out that for all cases except the CCCC case, the frequency shift is directly
proportional with ¢ for low values and inversely proportional for high values of ¢. Since the stiffness or the real part of the

(a) (b)
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2 opposite edges are vented* |
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_7 1 1 1 1 1 1 1
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Normalized Damping Force L0910 Force/d F,L,L,
Normalized Damping Force L0910 Force/d PaLXLy

Fig. 2. Normalized damping force for different boundary conditions of a square plate: (a) [3] for constant uniform deflection, (b) present study.

(a) (b)

Frequency shift Log,(rad/sec)
Damping Ratio Log,,{

Logygo

Fig. 3. Frequency shift (a) and damping ratio (b) for various boundary conditions of the square plate.
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Fig. 4. The midpoint (x,y=0.5m) absolute pressure variation.

reaction force reaches to steady state of which the impact of frequency shift is reduced. Moreover, unlike vented cases such
as CFCC, FCFC, etc. the frequency shift of CCCC is constant up to ¢ ~ 0.01 m~2. For high values of ¢ air underneath the plate
is getting squeezed, instead of escaping through boundaries which are open to ambient pressure. This phenomenon can
also be seen in the damping ratio graph. For very small values of ¢, the damping ratio stays constant, which means most of
the air can be pumped unlike for high frequencies, at which the pumping effect is reduced and damping is said to be
inversely proportional with frequency. These damping evaluations can also be used for the statistical energy analysis
purposes under parabolic flow restriction.

The comparison between the viscothermal model [9] and the present study is presented in Fig. 4. The variation of the
normalized absolute pressure at the center point of the plate is plotted against frequency.

The pressure calculations become different starting from 100 Hz, the model presented in this study is no longer capable
of producing correct results beyond this frequency.

5.2. Nonlinear (second harmonic) comparisons

The capability of the present analysis is further demonstrated by considering the nonlinear analysis of the plate which
has the same physical properties as that specified for the previous linear problem. The three cases CCCC, CFCC, and FCFC are
investigated. The influence of the nondimensional deflection multiplier é and ¢ on the total amount of force of the first and
second harmonics are illustrated in Fig. 5. The isopleth map is used to show the total force acting on the plate. As shown in
Fig. 5, the effect of the deflection ¢ on the total force is rather significant. When the ¢ values are low, the real part of the
linear solution Fig. 5(a) is proportionally increasing with increasing J. The real part of the total force tends to shift for
higher values of ¢. The real part of the first harmonic total force is nearly directly proportional with the ¢ in the ¢ range
investigated. However, the real part of the total force due to the second harmonic Re(Fa,), presents a different distribution.
Re(Fa,) is nearly directly proportional with ¢ for high values of &, but nearly constant for the lower values. It can be
concluded that the nonlinearity of the real part of the total force is rather important for the high values of ¢ for this case.
This phenomenon can also be observed on the imaginary part. Moreover, the optimal damping force of the first and second
harmonics in Fig. 5(b,d), can be achieved by adjusting the ¢ values around 50 m~2.

The plate with CFCC boundary conditions shows different contour lines in Fig. 6. In this case, Re(Fa,) and Re(Fa,) show
similar contour profiles except the magnitudes of the contours. The increase in the second harmonic force Re(Fa,) is more
than that of the Re(Fa,) for high ¢ values. The imaginary parts Im(Fa,) and Im(Fa,) exhibit local extremums around
o =10m=2 and gradually increase for high values of ¢. Unlike in the CCCC case, the stiffness and the damping force
increase in the second harmonic due to high values of  is more than the increase in the first harmonic. It can therefore be
concluded that the nonlinearity is more severe than that in the CCCC case.

The results of the plate with FCFC boundary conditions are presented in Fig. 7. The real forces Re(Fa;) and Re(Fa,), show
similar contour profiles but the amplitudes of the contours are different as in the previous case. However, the stiffness
force nonlinearity is lower compared to the CFCC case. This can also be observed in the damping forces in Fig. 7(b,d).



4628 M.M. Altug Bigak, M.D. Rao / Journal of Sound and Vibration 329 (2010) 4617-4633

(a) (b)

1.1 3,
—0.9 1 5
0.8 0.8 \TQ\ 0.8 "No«“’u?’
—0_7%-8‘ le/
0.6 —0.6 7— 0.6 g

04—04—— 54 0.4 15///
—0.3\3; : —
0202 Pl 0.2 ‘
a0R—— |
0 50 100 0 50 100
o o
(c) (d)

JENTE S

T— | ' \\/’0
o 0.4 05—

0.4
D —
0.2 0.2
0 50 100 0 50 100
c c
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Fig. 6. Total force acting to the plate for CFCC case, Re(a;) (a), Im(a;) (b), Re(az) (c), Im(az) (d).

6. Conclusions

Compact analytical models for computing the effects of compressible SFD are developed using Green’s function
approach. The coupling is handled by applying the structural velocity distribution to the Reynolds equation as the forcing
term. The nonlinear Reynolds equation is divided into the harmonics of the oscillation frequency of the structure. Then the
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Fig. 7. Total force acting to the plate for FCFC case, Re(a;) (a), Im(a;) (b), Re(az) (¢), Im(az) (d).

solution to the Reynolds equation for each harmonic is presented in order to calculate the nonlinear pressure distribution,
the nonlinear damping and stiffness forces, as well as the damping ratio and frequency shift for the linear case. The
nonlinearity due to the deflection amplitude of the structure and the squeeze number are investigated. It is found that the
nonlinearity is directly effected by the boundary conditions for a particular configuration. The presented method allows
the rapid calculation of reaction forces using the infinite series which includes the expansion of approximate mode shapes
on eigenfunctions. The truncation of infinite series to the first few terms can also be represented, which is useful for system
simulations. Tabulated examples can be expandable to cover more complicated and higher mode shapes.

In conclusion, the present analysis provides an efficient and rapid technique for investigating both linear and nonlinear
effects of SFD on rectangular elastic plates. Further, it also provides a powerful, compact and convenient tool to identify the
modal damping and frequency shift for linear cases as well as pressure distribution underneath plates in practice.

Appendix A. CCCC

Considering
2 2
. mnx __ nwy
axy) =y ZCm”COS—Lx cos L (54)
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and
az(x,y) = 24: ; e cos%cos@ (55)
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the second harmonic complex coefficients are
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Appendix B. CFCC

Considering the first harmonic solution as

2y mmx
a;(x,y) = (c +dcos —) cos
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and the second harmonic,
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Appendix C. FCFC

Considering the first harmonic solution as
2nx mmy
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and the second harmonic,
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the coefficients of the second harmonic can be found as

3n (dgdn—2CgCn)+Cn(g2 + 12 —m?)(cg + 1dg) 7
em—a{lf“r 20 }5(‘1"1—2‘3"1) az (n+tg+m) g

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)



M.M. Altug Bigak, M.D. Rao / Journal of Sound and Vibration 329 (2010) 4617-4633

where a =L} /(2icL? +m?n?) and n,g are odd numbers.
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Appendix D. FSFS

Considering the first harmonic solution as
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Appendix E. CFFC

Considering the first harmonic solution as
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and the second harmonic solution,

a(x,y) = ZZdrscos cos %

the coefficients of the infinite series can be found as d;s = Zad‘r‘s’) where
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Appendix F. FFFC

Considering the first harmonic solution as
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